Machine learning from crowds using candidate set-based labelling

dc.contributor.authorBeñaran-Muñoz, Iker
dc.contributor.authorHernández-González, Jerónimo
dc.contributor.authorPérez, Aritz
dc.date.accessioned2022-10-03T09:57:56Z
dc.date.available2022-10-03T09:57:56Z
dc.date.issued2022-09-08
dc.date.updated2022-10-03T09:57:57Z
dc.description.abstractCrowdsourcing is a popular cheap alternative in machine learning for gathering information from a set of annotators. Learning from crowd-labelled data involves dealing with its inherent uncertainty and inconsistencies. In the classical framework, each annotator provides a single label per example, which fails to capture the complete knowledge of annotators. We propose candidate labelling, that is, to allow annotators to provide a set of candidate labels for each example and thus express their doubts. We propose an appropriate model for the annotators, and present two novel learning methods that deal with the two basic steps (label aggregation and model learning) sequentially or jointly. Our empirical study shows the advantage of candidate labelling and the proposed methods with respect to the classical framework.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725385
dc.identifier.issn1541-1672
dc.identifier.urihttps://hdl.handle.net/2445/189544
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/MIS.2022.3205053
dc.relation.ispartofIEEE Intelligent Systems, 2022
dc.relation.urihttps://doi.org/10.1109/MIS.2022.3205053
dc.rightscc by-nc-nd (c) Beñaran-Muñoz, Iker et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationCultura participativa
dc.subject.classificationDades massives
dc.subject.otherMachine learning
dc.subject.otherParticipatory culture
dc.subject.otherBig data
dc.titleMachine learning from crowds using candidate set-based labelling
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/article

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725385.pdf
Mida:
661.1 KB
Format:
Adobe Portable Document Format