A formal introduction to zero-knowledge proofs

dc.contributor.advisorMazorra, Bruno
dc.contributor.advisorDieulefait, L. V. (Luis Victor)
dc.contributor.authorPeso Vilella, Antonio
dc.date.accessioned2025-04-09T08:28:47Z
dc.date.available2025-04-09T08:28:47Z
dc.date.issued2024-06-10
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Bruno Mazorra i Luis Victor Dieulefaitca
dc.description.abstractThe idea of zero-knowledge proof was first introduced by Goldwasser, Micali and Rackoff [GMR89] and has found its way to many real-world applications. The growing need for privacy in information exchange (e.g. transactions, digital signatures, commitment schemes, ...) lead to the development of proofs that yield nothing more than their validity. We introduce the building blocks for zero-knowledge proofs through mathematical rigour, allowing the reader to gain a solid foundation to research further related topics. We explore some necessary notions of cryptography and probability, as well as computation theory by utilizing Turing machines as an automation abstraction. We delve into the theory of decision problems and the consequent classification through complexity classes, specially $\mathcal{P}, \mathcal{N} \mathcal{P}, \mathcal{B} \mathcal{P} \mathcal{P}$ and $\mathcal{I P}$. We use the concepts of repetition and interaction to prove that the decision error for languages in $\mathcal{B P} \mathcal{P}$ and $\mathcal{I P}$ can be decreased exponentially and explore the example of Graph Non-Isomorphism. We introduce the idea of zero-knowledge interactive proof systems and define some variations of its definition. We explore the example of Graph Isomorphism and conclude showing that the sequential repetition of zero-knowledge interactive proofs is indeed a zero-knowledge interactive proof.en
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/220361
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Antonio Peso Vilella, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationMàquines de Turingca
dc.subject.classificationComplexitat computacional
dc.subject.classificationTeoria de la computacióca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherTuring machinesen
dc.subject.otherComputational complexity
dc.subject.otherTheory of computationen
dc.subject.otherBachelor's thesesen
dc.titleA formal introduction to zero-knowledge proofsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_peso_vilella_antonio.pdf
Mida:
1.03 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria