Homotopical realizations of infinity Groupoids
| dc.contributor.advisor | Casacuberta, Carles | |
| dc.contributor.author | McGarry Furriol, Jan | |
| dc.date.accessioned | 2021-06-01T08:59:32Z | |
| dc.date.available | 2021-06-01T08:59:32Z | |
| dc.date.issued | 2020-06-22 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Carles Casacuberta | ca |
| dc.description.abstract | [en] Grothendieck’s homotopy hypothesis asserts that the study of homotopy types of topological spaces is equivalent to the study of $\infty$-groupoids, illustrating how important ideas in higher category theory stem from basic homotopical concepts. In practice there are distinct models for $\infty$-groupoids, and providing a proof of the homotopy hypothesis is a test for the suitability of any such model. In this thesis, we give a proof of the homotopy hypothesis using topological categories (i.e., categories enriched over topological spaces) as models for $\infty$-groupoids. In the same context, we propose a manageable model for the fundamental $\infty$-groupoids of a topological space. | ca |
| dc.format.extent | 56 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/177842 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Jan McGarry Furriol, 2020 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Categories (Matemàtica) | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Teoria de l'homotopia | ca |
| dc.subject.classification | Grupoides | ca |
| dc.subject.other | Categories (Mathematics) | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Homotopy theory | en |
| dc.subject.other | Groupoids | en |
| dc.title | Homotopical realizations of infinity Groupoids | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- 177842.pdf
- Mida:
- 491.8 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria