Stability and moduli spaces of syzygy bundles

dc.contributor.advisorMiró-Roig, Rosa M. (Rosa Maria)
dc.contributor.authorMacías Marques, Pedro
dc.contributor.otherUniversitat de Barcelona. Departament d'Àlgebra i Geometria
dc.date.accessioned2013-04-23T12:13:37Z
dc.date.available2013-04-23T12:13:37Z
dc.date.issued2009-11-30
dc.description.abstract[eng] To determine whether a syzygy bundle on PN is stable, or semistable, is a long-standing problem in algebraic geometry. It is closely related to the problem of finding the Hilbert function and the minimal free resolution of the coordinate ring of the variety defined by a family of general homogeneous polynomials f1, . . . , fn in K[X0, . . . ,XN]. This problem goes back at least to the eighties, when Fröberg addresses it in his paper, to find a lower estimate for the Hilbert series of such a ring in terms of the degrees of f1, . . . , fn. In this thesis we consider the case of syzygy bundles defined by general forms f1, . . . , fn of the same degree d, and prove their stability and unobstructedness for N ≥ 2, except for the case (N, d, n) = (2, 2, 5), where only semistability is guaranteed. To this end, we focus on the case of monomials and derive consequences for general forms from here. The main goal of this work is therefore to give a complete answer to the following problem: Does there exist for every d and every n ≤ (d+N / N) a family of n monomials in K [X0, . . . ,XN] of degree d such that their syzygy bundle is semistable?eng
dc.description.abstract[cat] Determinar si un fibrat de sizígies sobre P(N) és estable, o semiestable, és un problema amb una llarga història en geometria algebraica. Està estretament relacionat amb el problema de trobar la resolució lliure minimal de l'anell de coordenades de la varietat definida per una família de polinomis homogenis genèrics f(1), . . . , f(n) en K[X0, . . . ,XN]. Aquest problema data almenys dels anys vuitanta, quan Fröberg l'estudia al seu article i troba una estimació per a un minorant de la sèrie de Hilbert d'aquell anell en termes dels graus dels polinomis f(1), . . . , f(n). En aquesta tesi, considerem el cas de fibrats de sizígies definits per formes genèriques f(1), . . . , f(n) d'un mateix grau "d", i demostrem la seva estabilitat i no obstrucció per a N ≥ 2, excepte en el cas (N, d, n) = (2, 2, 5), on només la semiestabilitat està garantida. Per dur a terme aquesta tasca, ens restringirme primer al cas de monomis i en traurem conseqüències per al cas de formes genèriques. Per això, l'objectiu principal d'aquesta tesi és donar una resposta completa al problema següent: "Existeix per a cada d i cada n ≤ (d+N / N) una família de n monomis en K [X0, . . . ,XN] de grau "d" tal que el seu fibrat de sizígies és semiestable?cat
dc.format.mimetypeapplication/pdf
dc.identifier.dlB.36408-2010
dc.identifier.isbn9788469351697
dc.identifier.tdxhttp://www.tdx.cat/TDX-0611110-111551
dc.identifier.tdxhttp://hdl.handle.net/10803/669
dc.identifier.urihttps://hdl.handle.net/2445/35146
dc.language.isoeng
dc.publisherUniversitat de Barcelona
dc.rights(c) Macías Marques, 2009
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesscat
dc.sourceTesis Doctorals - Departament - Algebra i Geometria
dc.subject.classificationTeoria de mòduls
dc.subject.classificationGeometria algebraica
dc.subject.otherModuli theory
dc.subject.otherAlgebraic geometry
dc.titleStability and moduli spaces of syzygy bundleseng
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
PMM_THESIS.pdf
Mida:
1.45 MB
Format:
Adobe Portable Document Format