Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

dc.contributor.authorArriarán, Sofía
dc.contributor.authorAgnelli, Silvia
dc.contributor.authorRemesar Betlloch, Xavier
dc.contributor.authorFernández López, José Antonio
dc.contributor.authorAlemany, Marià, 1946-
dc.date.accessioned2016-02-29T16:10:17Z
dc.date.available2016-02-29T16:10:17Z
dc.date.issued2015-11-10
dc.date.updated2016-02-29T16:10:22Z
dc.descriptionPodeu consultar dades primàries associades a l'article a: http://hdl.handle.net/2445/66872
dc.description.abstractBackground and Objectives.White adipose tissue (WAT) shows marked sex- and diet-dependent differences.However, our metabolic knowledge ofWAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four mainWAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent ofWAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesentericWAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneousWAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec655300
dc.identifier.issn2167-8359
dc.identifier.pmid26587356
dc.identifier.urihttps://hdl.handle.net/2445/95986
dc.language.isoeng
dc.publisherPeerJ
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.7717/peerj.1399
dc.relation.ispartofPeerJ, 2015, vol. 3, p. e1399
dc.relation.urihttp://dx.doi.org/10.7717/peerj.1399
dc.relation.urihttp://hdl.handle.net/2445/66872
dc.rightscc-by (c) Arriarán, Sofía et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)
dc.subject.classificationTeixit adipós
dc.subject.classificationAmoníac
dc.subject.classificationAminoàcids
dc.subject.classificationMetabolisme dels lípids
dc.subject.classificationUrea
dc.subject.classificationRates (Animals de laboratori)
dc.subject.otherAdipose tissues
dc.subject.otherAmmonia
dc.subject.otherAmino acids
dc.subject.otherLipid metabolism
dc.subject.otherUrea
dc.subject.otherRats as laboratory animals
dc.titleEffects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
655300.pdf
Mida:
612.56 KB
Format:
Adobe Portable Document Format