El principio del máximo de Pontryagin

dc.contributor.advisorCorcuera Valverde, José Manuel
dc.contributor.authorMuñoz Ruz, Rubén
dc.date.accessioned2015-02-06T09:04:48Z
dc.date.available2015-02-06T09:04:48Z
dc.date.issued2014-06-24
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2014, Director: José Manuel Corcuera Valverdeca
dc.description.abstractThe aim of this end of degree work is to analyze a few problems studied by the optimal control theory using the Pontryagin’s maximum principle. It is divided into three distinct parts: in the first one we introduce the calculus of variations theory, in the second one we present the optimal control theory and the maximum principle and we show that this theory can be treated as an extension of calculus of variations; and, finally, in the last part we expose how the optimal control theory can be extended considering some randomness, that is to say, for cases involving stochastic processes.ca
dc.format.extent51 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/62444
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Rubén Muñoz Ruz, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationCàlcul de variacions
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria de controlca
dc.subject.classificationProcessos estocàsticsca
dc.subject.classificationEquacions diferencials ordinàriesca
dc.subject.classificationSistemes dinàmics diferenciablesca
dc.subject.otherCalculus of variations
dc.subject.otherBachelor's theses
dc.subject.otherControl theoryen
dc.subject.otherStochastic processesen
dc.subject.otherOrdinary differential equationsen
dc.subject.otherDifferentiable dynamical systemsen
dc.titleEl principio del máximo de Pontryaginca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
278.93 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria