Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Ling Zhu, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/186091

Measuring domain shift effect for deep learning in mammography

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Breast cancer remains a global challenge, affecting over 2.3 million women in 2020 (refs WHO). The most common screening technology is mammography. The use of deep learning approaches such as Convolutional Neural Networks has recently shown promising results. However, these models are constrained by the limited size of publicly available mammography datasets. Moreover, these models are highly dependent on the quality of the provided training data. In this work, we will study the breast cancer classification problem by using Convolutional Neural Networks. We will show the effectiveness of Convolutional neural networks in breast cancer problems, and we will explore the domain shift problem by using different mammography datasets. Extensive validation will be presented to show the strengths and limitations of breast cancer classification.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Laura Igual Muñoz, Lidia Garrucho Morras i Karim Lekadir

Citació

Citació

ZHU, Ling. Measuring domain shift effect for deep learning in mammography. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/186091]

Exportar metadades

JSON - METS

Compartir registre