Measuring domain shift effect for deep learning in mammography

dc.contributor.advisorIgual Muñoz, Laura
dc.contributor.advisorGarrucho, Lidia
dc.contributor.advisorLekadir, Karim, 1977-
dc.contributor.authorZhu, Ling
dc.date.accessioned2022-05-31T07:40:20Z
dc.date.available2022-05-31T07:40:20Z
dc.date.issued2021-09-02
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Laura Igual Muñoz, Lidia Garrucho Morras i Karim Lekadirca
dc.description.abstract[en] Breast cancer remains a global challenge, affecting over 2.3 million women in 2020 (refs WHO). The most common screening technology is mammography. The use of deep learning approaches such as Convolutional Neural Networks has recently shown promising results. However, these models are constrained by the limited size of publicly available mammography datasets. Moreover, these models are highly dependent on the quality of the provided training data. In this work, we will study the breast cancer classification problem by using Convolutional Neural Networks. We will show the effectiveness of Convolutional neural networks in breast cancer problems, and we will explore the domain shift problem by using different mammography datasets. Extensive validation will be presented to show the strengths and limitations of breast cancer classification.ca
dc.format.extent42 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186091
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Ling Zhu, 2021
dc.rightscodi: GPL (c) Ling Zhu, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationCàncer de mama
dc.subject.classificationMamografia
dc.subject.classificationXarxes neuronals convolucionals
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)ca
dc.subject.otherBreast cancer
dc.subject.otherMammography
dc.subject.otherConvolutional neural networks
dc.subject.otherMaster's theses
dc.subject.otherMachine learningen
dc.subject.otherLearning classifier systemsen
dc.titleMeasuring domain shift effect for deep learning in mammographyca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
148.67 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_zhu_ling.pdf
Mida:
4.58 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria