Deep learning exotic hadrons
| dc.contributor.author | Ng, L. | |
| dc.contributor.author | Bibrzycki, Ł | |
| dc.contributor.author | Nys, J. | |
| dc.contributor.author | Fernandez-Ramirez, César | |
| dc.contributor.author | Pillon, Alessandro | |
| dc.contributor.author | Mathieu, Vicent | |
| dc.contributor.author | Rasmusson, A. J. | |
| dc.contributor.author | Szczepaniak, Adam Pawel | |
| dc.date.accessioned | 2023-01-26T12:14:11Z | |
| dc.date.available | 2023-01-26T12:14:11Z | |
| dc.date.issued | 2022-05-17 | |
| dc.date.updated | 2023-01-26T12:14:12Z | |
| dc.description.abstract | We perform the first amplitude analysis of experimental data using deep neural networks to determine the nature of an exotic hadron. Specifically, we study the line shape of the Pc(4312) signal reported by the LHCb collaboration, and we find that its most likely interpretation is that of a virtual state. This method can be applied to other near-threshold resonance candidates. | |
| dc.format.extent | 6 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 725660 | |
| dc.identifier.issn | 1550-7998 | |
| dc.identifier.uri | https://hdl.handle.net/2445/192647 | |
| dc.language.iso | eng | |
| dc.publisher | American Physical Society | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1103/PhysRevD.105.L091501 | |
| dc.relation.ispartof | Physical Review D, 2022, vol. 105, num. 9, p. L091501-1-L091501-6 | |
| dc.relation.uri | https://doi.org/10.1103/PhysRevD.105.L091501 | |
| dc.rights | (c) American Physical Society, 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Física Quàntica i Astrofísica) | |
| dc.subject.classification | Quarks | |
| dc.subject.classification | Partícules (Matèria) | |
| dc.subject.other | Quarks | |
| dc.subject.other | Particles | |
| dc.title | Deep learning exotic hadrons | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1