Newton-Like Components in the Chebyshev–Halley Family of Degree $n$Polynomials

dc.contributor.authorParaschiv, Dan
dc.date.accessioned2025-01-20T08:18:54Z
dc.date.available2025-01-20T08:18:54Z
dc.date.issued2023-03-04
dc.date.updated2025-01-20T08:18:54Z
dc.description.abstractWe study the Chebyshev-Halley methods applied to the family of polynomials $f_{n, c}(z)=z^n+c$, for $n \geq 2$ and $c \in \mathbb{C}^*$. We prove the existence of parameters such that the immediate basins of attraction corresponding to the roots of unity are infinitely connected. We also prove that, for $n \geq 2$, the corresponding dynamical plane contains a connected component of the Julia set, which is a quasiconformal deformation of the Julia set of the map obtained by applying Newton's method to $f_{n,-1}$.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn1660-5446
dc.identifier.urihttps://hdl.handle.net/2445/217654
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00009-023-02335-z
dc.relation.ispartofMediterranean Journal of Mathematics, 2023, vol. 20, num.3
dc.relation.urihttps://doi.org/10.1007/s00009-023-02335-z
dc.rightscc by (c) Dan Paraschiv, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics complexos
dc.subject.classificationFuncions holomorfes
dc.subject.classificationFuncions de variables complexes
dc.subject.otherComplex dynamical systems
dc.subject.otherHolomorphic functions
dc.subject.otherFunctions of complex variables
dc.titleNewton-Like Components in the Chebyshev–Halley Family of Degree $n$Polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870386.pdf
Mida:
1.11 MB
Format:
Adobe Portable Document Format