El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Reverter Comes, Ferran et al., 2014
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/53298

Kernel-PCA data integration with enhanced interpretability

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.

Citació

Citació

REVERTER COMES, Ferran, VEGAS LOZANO, Esteban, OLLER I SALA, Josep maria. Kernel-PCA data integration with enhanced interpretability. _BMC Systems Biology_. 2014. Vol. 8(S2), núm. s6, pàgs. 1-9. [consulta: 8 de gener de 2026]. ISSN: 1752-0509. [Disponible a: https://hdl.handle.net/2445/53298]

Exportar metadades

JSON - METS

Compartir registre