Kernel-PCA data integration with enhanced interpretability

dc.contributor.authorReverter Comes, Ferran
dc.contributor.authorVegas Lozano, Esteban
dc.contributor.authorOller i Sala, Josep Maria
dc.date.accessioned2014-04-07T13:42:11Z
dc.date.available2014-04-07T13:42:11Z
dc.date.issued2014-03
dc.date.updated2014-04-07T13:42:12Z
dc.description.abstractBackground Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec637088
dc.identifier.issn1752-0509
dc.identifier.pmid25032747
dc.identifier.urihttps://hdl.handle.net/2445/53298
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1186/1752-0509-8-S2-S6
dc.relation.ispartofBMC Systems Biology, 2014, vol. 8(S2), num. s6, p. 1-9
dc.relation.urihttp://dx.doi.org/10.1186/1752-0509-8-S2-S6
dc.rightscc-by (c) Reverter Comes, Ferran et al., 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationEstadística
dc.subject.classificationBioinformàtica
dc.subject.classificationMètodes estadístics
dc.subject.classificationProgrames d'ordinador
dc.subject.classificationProcessament de dades
dc.subject.otherStatistics
dc.subject.otherBioinformatics
dc.subject.otherStatistical methods
dc.subject.otherComputer programs
dc.subject.otherData processing
dc.titleKernel-PCA data integration with enhanced interpretability
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
637088.pdf
Mida:
2.25 MB
Format:
Adobe Portable Document Format