Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Marín, Javier et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/181116

SSSGAN: Satellite Style and Structure Generative Adversarial Networks

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.

Citació

Citació

MARÍN TUR, Javier, ESCALERA GUERRERO, Sergio. SSSGAN: Satellite Style and Structure Generative Adversarial Networks. _Remote Sensing_. 2021. Vol. 13, núm. 19. [consulta: 24 de gener de 2026]. ISSN: 2072-4292. [Disponible a: https://hdl.handle.net/2445/181116]

Exportar metadades

JSON - METS

Compartir registre