SSSGAN: Satellite Style and Structure Generative Adversarial Networks

dc.contributor.authorMarín Tur, Javier
dc.contributor.authorEscalera Guerrero, Sergio
dc.date.accessioned2021-11-09T08:22:56Z
dc.date.available2021-11-09T08:22:56Z
dc.date.issued2021-10-05
dc.date.updated2021-11-09T08:22:56Z
dc.description.abstractThis work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec714391
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/2445/181116
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/rs13193984
dc.relation.ispartofRemote Sensing, 2021, vol. 13, num. 19
dc.relation.urihttps://doi.org/10.3390/rs13193984
dc.rightscc-by (c) Marín, Javier et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationImatges satel·litàries
dc.subject.classificationVisió per ordinador
dc.subject.classificationAprenentatge automàtic
dc.subject.otherRemote-sensing images
dc.subject.otherComputer vision
dc.subject.otherMachine learning
dc.titleSSSGAN: Satellite Style and Structure Generative Adversarial Networks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
714391.pdf
Mida:
30.35 MB
Format:
Adobe Portable Document Format