Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195200

On monomial curves obtained by gluing

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We study arithmetic properties of tangent cones associated to large families of monomial curves obtained by gluing. In particular, we characterize their Cohen-Macaulay and Gorenstein properties and prove that they have non-decreasing Hilbert functions. The results come from a careful analysis of some special Apéry sets of the numerical semigroups obtained by gluing under a condition that we call specific gluing. As a consequence, we complete and extend the results proved by Arslan et al. (in Proc. Am. Math. Soc. 137:2225-2232, 2009) about nice gluings by using different techniques. Our results also allow to prove that for a given numerical semigroup with a non-decreasing Hilbert function and an integer $q>1$, extensions of it by $q$, except a finite number, have non-decreasing Hibert functions.

Citació

Citació

JAFARI, Raheleh, ZARZUELA, Santiago. On monomial curves obtained by gluing. _Semigroup Forum_. 2013. Vol. 88, núm. 397-416. [consulta: 23 de gener de 2026]. ISSN: 0037-1912. [Disponible a: https://hdl.handle.net/2445/195200]

Exportar metadades

JSON - METS

Compartir registre