On monomial curves obtained by gluing

dc.contributor.authorJafari, Raheleh
dc.contributor.authorZarzuela, Santiago
dc.date.accessioned2023-03-14T07:50:34Z
dc.date.available2023-03-14T07:50:34Z
dc.date.issued2013-10-23
dc.date.updated2023-03-14T07:50:34Z
dc.description.abstractWe study arithmetic properties of tangent cones associated to large families of monomial curves obtained by gluing. In particular, we characterize their Cohen-Macaulay and Gorenstein properties and prove that they have non-decreasing Hilbert functions. The results come from a careful analysis of some special Apéry sets of the numerical semigroups obtained by gluing under a condition that we call specific gluing. As a consequence, we complete and extend the results proved by Arslan et al. (in Proc. Am. Math. Soc. 137:2225-2232, 2009) about nice gluings by using different techniques. Our results also allow to prove that for a given numerical semigroup with a non-decreasing Hilbert function and an integer $q>1$, extensions of it by $q$, except a finite number, have non-decreasing Hibert functions.
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec629530
dc.identifier.issn0037-1912
dc.identifier.urihttps://hdl.handle.net/2445/195200
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s00233-013-9536-1
dc.relation.ispartofSemigroup Forum, 2013, vol. 88, p. 397-416
dc.relation.urihttps://doi.org/10.1007/s00233-013-9536-1
dc.rights(c) Springer Verlag, 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationCorbes algebraiques
dc.subject.classificationMòduls (Àlgebra)
dc.subject.classificationAnells locals
dc.subject.classificationSemigrups
dc.subject.otherAlgebraic curves
dc.subject.otherModules (Algebra)
dc.subject.otherLocal rings
dc.subject.otherSemigroups
dc.titleOn monomial curves obtained by gluing
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
629530.pdf
Mida:
254.4 KB
Format:
Adobe Portable Document Format