Polinomios y series de Ehrhart

dc.contributor.advisorD'Andrea, Carlos, 1973-
dc.contributor.authorDuran Prats, Joan
dc.date.accessioned2015-01-30T09:50:48Z
dc.date.available2015-01-30T09:50:48Z
dc.date.issued2014-06-21
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2014, Director: Carlos D'Andreaca
dc.description.abstractThe main goal of this dissertation is to prove the Eugèene Ehrhart’s theorem about integer-points enumerating functions over polytopes. It is, in fact, a generalization of Pick’s theorem in any finite-dimensional Euclidean space. We have structured this text in three parts. The introduction, where we focus our attention to hyperplanes, convex sets, polytopes and pointed cones, is the first part. The following chapters belong to the central part of the document. In Chapter 3, we will give some examples showing that the number of lattice points 2 in a (positive) integer dilate of a polytope $\mathcal {P} \subseteq \mathbb{R} ^{d}$ is a polynomial with the same degree as the dimension of P : this is the statement of Ehrhart’s theorem. After that, we will give a geometric proof of it, and finally (Chapter 4) we will demonstrate the Ehrhart-MacDonald reciprocity law and show the geometric meaning of some Ehrhart polynomial’s coefficients. The fifth Chapter is devoted to apply Ehrhart theory to solve some problems about combinatorics. The last part is the appendix which includes many propositions and lemmas that are used in the previous part.ca
dc.format.extent109 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/62128
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Joan Duran Prats, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationPolinomis
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationAnàlisi combinatòriaca
dc.subject.otherPolynomials
dc.subject.otherBachelor's theses
dc.subject.otherCombinatorial analysiseng
dc.titlePolinomios y series de Ehrhartca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.91 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria