An enhanced uncertainty principle for the Vaserstein distance

dc.contributor.authorCarroll, Tom
dc.contributor.authorMassaneda Clares, Francesc Xavier
dc.contributor.authorOrtega Cerdà, Joaquim
dc.date.accessioned2020-12-07T11:19:45Z
dc.date.available2020-12-07T11:19:45Z
dc.date.issued2020-03-13
dc.date.updated2020-12-07T11:19:46Z
dc.description.abstractAbstract. We improve some recent results of Sagiv and Steinerberger that quantify the following uncertainty principle: for a function $f$ with mean zero, either the size of the zero set of the function or the cost of transporting the mass of the positive part of $f$ to its negative part must be big. We also provide a sharp upper estimate of the transport cost of the positive part of an eigenfunction of the Laplacian. This proves a conjecture of Steinerberger and provides a lower bound of the size of the nodal set of the eigenfunction.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec702846
dc.identifier.issn0024-6093
dc.identifier.urihttps://hdl.handle.net/2445/172580
dc.language.isoeng
dc.publisherLondon Mathematical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1112/blms.12390
dc.relation.ispartofBulletin of the London Mathematical Society, 2020, vol. 52, num. 6, p. 1158-1173
dc.relation.urihttps://doi.org/10.1112/blms.12390
dc.rights(c) London Mathematical Society, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de la mesura geomètrica
dc.subject.classificationEquacions en derivades parcials
dc.subject.classificationCàlcul de variacions
dc.subject.classificationOptimització matemàtica
dc.subject.classificationAnàlisi global (Matemàtica)
dc.subject.otherGeometric measure theory
dc.subject.otherPartial differential equations
dc.subject.otherCalculus of variations
dc.subject.otherMathematical optimization
dc.subject.otherGlobal analysis (Mathematics)
dc.titleAn enhanced uncertainty principle for the Vaserstein distance
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
702846.pdf
Mida:
224.78 KB
Format:
Adobe Portable Document Format