El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Pérez Millán, Agnès et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202186

Evaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer's disease

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Linear mixed effects (LME) modelling under both frequentist and Bayesian frameworks can be used to study longitudinal trajectories. We studied the performance of both frameworks on different dataset configurations using hippocampal volumes from longitudinal MRI data across groups-healthy controls (HC), mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients, including subjects that converted from MCI to AD. We started from a big database of 1250 subjects from the Alzheimer's disease neuroimaging initiative (ADNI), and we created different reduced datasets simulating real-life situations using a random-removal permutation-based approach. The number of subjects needed to differentiate groups and to detect conversion to AD was 147 and 115 respectively. The Bayesian approach allowed estimating the LME model even with very sparse databases, with high number of missing points, which was not possible with the frequentist approach. Our results indicate that the frequentist approach is computationally simpler, but it fails in modelling data with high number of missing values.

Citació

Citació

PÉREZ MILLAN, Agnès, CONTADOR MUÑANA, José miguel, TUDELA FERNÁNDEZ, Raúl, NIÑEROLA BAIZÁN, Aida, SETOAIN PEREGO, Xavier, LLADÓ PLARRUMANÍ, Albert, SÁNCHEZ VALLE, Raquel, SALA LLONCH, Roser. Evaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer's disease. _Scientific Reports_. 2022. Vol. 12, núm. 1, pàgs. 14448. [consulta: 24 de desembre de 2025]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/202186]

Exportar metadades

JSON - METS

Compartir registre