El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Evaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer's disease

dc.contributor.authorPérez Millan, Agnès
dc.contributor.authorContador Muñana, José Miguel
dc.contributor.authorTudela Fernández, Raúl
dc.contributor.authorNiñerola Baizán, Aida
dc.contributor.authorSetoain Perego, Xavier
dc.contributor.authorLladó Plarrumaní, Albert
dc.contributor.authorSánchez Valle, Raquel
dc.contributor.authorSala Llonch, Roser
dc.date.accessioned2023-09-21T17:31:25Z
dc.date.available2023-09-21T17:31:25Z
dc.date.issued2022-08-24
dc.date.updated2023-09-21T17:31:25Z
dc.description.abstractLinear mixed effects (LME) modelling under both frequentist and Bayesian frameworks can be used to study longitudinal trajectories. We studied the performance of both frameworks on different dataset configurations using hippocampal volumes from longitudinal MRI data across groups-healthy controls (HC), mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients, including subjects that converted from MCI to AD. We started from a big database of 1250 subjects from the Alzheimer's disease neuroimaging initiative (ADNI), and we created different reduced datasets simulating real-life situations using a random-removal permutation-based approach. The number of subjects needed to differentiate groups and to detect conversion to AD was 147 and 115 respectively. The Bayesian approach allowed estimating the LME model even with very sparse databases, with high number of missing points, which was not possible with the frequentist approach. Our results indicate that the frequentist approach is computationally simpler, but it fails in modelling data with high number of missing values.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725632
dc.identifier.idimarina9329116
dc.identifier.idimarina9329116
dc.identifier.issn2045-2322
dc.identifier.pmid36002550
dc.identifier.urihttps://hdl.handle.net/2445/202186
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-022-18129-4
dc.relation.ispartofScientific Reports, 2022, vol. 12, num. 1, p. 14448
dc.relation.urihttps://doi.org/10.1038/s41598-022-18129-4
dc.rightscc-by (c) Pérez Millán, Agnès et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
dc.subject.classificationMalaltia d'Alzheimer
dc.subject.classificationTrastorns de la memòria
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationDiagnòstic per la imatge
dc.subject.otherAlzheimer's disease
dc.subject.otherMemory disorders
dc.subject.otherMagnetic resonance imaging
dc.subject.otherDiagnostic imaging
dc.titleEvaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer's disease
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725632.pdf
Mida:
1.36 MB
Format:
Adobe Portable Document Format