Carregant...
Tipus de document
TesiVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/35145
Variedades de Prym de curvas bielípticas.
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[spa] Las variedades de Prym forman una clase de variedades abelianas principalmente polarizadas más general que las jacobianas. Se definen asociando a un morfismo no ramificado de grado 2 entre curvas algebraicas irreducibles y lisas la componente neutra del núcleo de la aplicación norma inducida entre las respectivas jacobianas. Llamamos aplicación de Prym a la asignación correspondiente. Análogamente al caso de las jacobianas el problema de Torelli cuestiona si la variedad de Prym determina el recubrimiento, es decir si la aplicación de Prym es inyectiva. Es conocido que para un recubrimiento general en el que la curva imagen tiene género mayor o igual a 7 la respuesta es afirmativa. Por otro lado, una construcción debida a Donagi y llamada construcción tetragonal proporciona ejemplos de elementos diferentes con la misma variedad de Prym asociada y género arbitrario. Es decir, la aplicación de Prym no es inyectiva en ningún caso. La conjetura tetragonal afirma que éstos son los únicos ejemplos de no inyectividad.
En esta tesis se estudia la fibra de la aplicación de Prym para un recubrimiento doble no ramificado convexo de una curva bielíptica general (Una curva bielíptica es aquella que admite un morfismo de grado 2 sobre una curva elíptica). Se demuestra que en este contexto existe una construcción diferente de la tetragonal que también proporciona ejemplos de no inyectividad. A continuación se prueba que ambas construcciones (la tetragonal y la obtenida) explican en su totalidad la fibra que se desea estudiar. En particular, se obtiene un contraejemplo a la conjetura tetragonal y se prueba que es el único contraejemplo en el contexto bielíptico general.
Matèries (anglès)
Citació
Citació
NARANJO DEL VAL, Juan carlos. Variedades de Prym de curvas bielípticas.. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/35145]