Discrete degree of symmetry of manifolds

dc.contributor.authorMundet i Riera, Ignasi
dc.date.accessioned2024-11-19T09:06:25Z
dc.date.available2024-11-19T09:06:25Z
dc.date.issued2024-04-19
dc.date.updated2024-11-19T09:06:25Z
dc.description.abstractWe define the discrete degree of symmetry disc-sym $(X)$ of a closed $n$-manifold $X$ as the biggest $m \geq 0$ such that $X$ supports an effective action of $(\mathbb{Z} / r)^m$ for arbitrarily big values of $r$. We prove that if $X$ is connected then disc-sym $(X) \leq$ $3 n / 2$. We propose the question of whether for every closed connected $n$-manifold $X$ the inequality disc-sym $(X) \leq n$ holds true, and whether the only closed connected $n$-manifold $X$ for which disc-sym $(X)=n$ is the torus $T^n$. We prove partial results providing evidence for an affirmative answer to this question.
dc.format.extent38 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751893
dc.identifier.issn1083-4362
dc.identifier.urihttps://hdl.handle.net/2445/216593
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z
dc.relation.ispartofTransformation Groups, 2024
dc.relation.urihttps://doi.org/https://doi.org/10.1007/s00031-024-09858-z
dc.rightscc by (c) Ignasi Mundet i Riera, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGrups de transformacions
dc.subject.classificationTopologia
dc.subject.otherTransformation groups
dc.subject.otherTopology
dc.titleDiscrete degree of symmetry of manifolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870730.pdf
Mida:
823.69 KB
Format:
Adobe Portable Document Format