Discrete degree of symmetry of manifolds
| dc.contributor.author | Mundet i Riera, Ignasi | |
| dc.date.accessioned | 2024-11-19T09:06:25Z | |
| dc.date.available | 2024-11-19T09:06:25Z | |
| dc.date.issued | 2024-04-19 | |
| dc.date.updated | 2024-11-19T09:06:25Z | |
| dc.description.abstract | We define the discrete degree of symmetry disc-sym $(X)$ of a closed $n$-manifold $X$ as the biggest $m \geq 0$ such that $X$ supports an effective action of $(\mathbb{Z} / r)^m$ for arbitrarily big values of $r$. We prove that if $X$ is connected then disc-sym $(X) \leq$ $3 n / 2$. We propose the question of whether for every closed connected $n$-manifold $X$ the inequality disc-sym $(X) \leq n$ holds true, and whether the only closed connected $n$-manifold $X$ for which disc-sym $(X)=n$ is the torus $T^n$. We prove partial results providing evidence for an affirmative answer to this question. | |
| dc.format.extent | 38 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 751893 | |
| dc.identifier.issn | 1083-4362 | |
| dc.identifier.uri | https://hdl.handle.net/2445/216593 | |
| dc.language.iso | eng | |
| dc.publisher | Springer Verlag | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1007/s00031-024-09858-z | |
| dc.relation.ispartof | Transformation Groups, 2024 | |
| dc.relation.uri | https://doi.org/https://doi.org/10.1007/s00031-024-09858-z | |
| dc.rights | cc by (c) Ignasi Mundet i Riera, 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Grups de transformacions | |
| dc.subject.classification | Topologia | |
| dc.subject.other | Transformation groups | |
| dc.subject.other | Topology | |
| dc.title | Discrete degree of symmetry of manifolds | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1