Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/119121

Generalized multi-scale stacked sequential learning for multi-class classification

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.

Matèries (anglès)

Citació

Citació

PUERTAS I PRATS, Eloi, ESCALERA GUERRERO, Sergio, PUJOL VILA, Oriol. Generalized multi-scale stacked sequential learning for multi-class classification. _Pattern Analysis and Applications_. 2015. Vol. 18, núm. 2, pàgs. 247-261. [consulta: 10 de gener de 2026]. ISSN: 1433-7541. [Disponible a: https://hdl.handle.net/2445/119121]

Exportar metadades

JSON - METS

Compartir registre