Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/119121
Generalized multi-scale stacked sequential learning for multi-class classification
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.
Matèries
Matèries (anglès)
Citació
Citació
PUERTAS I PRATS, Eloi, ESCALERA GUERRERO, Sergio, PUJOL VILA, Oriol. Generalized multi-scale stacked sequential learning for multi-class classification. _Pattern Analysis and Applications_. 2015. Vol. 18, núm. 2, pàgs. 247-261. [consulta: 10 de gener de 2026]. ISSN: 1433-7541. [Disponible a: https://hdl.handle.net/2445/119121]