Generalized multi-scale stacked sequential learning for multi-class classification

dc.contributor.authorPuertas i Prats, Eloi
dc.contributor.authorEscalera Guerrero, Sergio
dc.contributor.authorPujol Vila, Oriol
dc.date.accessioned2018-01-18T13:43:24Z
dc.date.available2018-01-18T13:43:24Z
dc.date.issued2015-04-30
dc.date.updated2018-01-18T13:43:24Z
dc.description.abstractIn many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec622017
dc.identifier.issn1433-7541
dc.identifier.urihttps://hdl.handle.net/2445/119121
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s10044-013-0333-y
dc.relation.ispartofPattern Analysis and Applications, 2015, vol. 18, num. 2, p. 247-261
dc.relation.urihttps://doi.org/10.1007/s10044-013-0333-y
dc.rights(c) Springer Verlag, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAlgorismes
dc.subject.classificationAprenentatge
dc.subject.otherAlgorithms
dc.subject.otherLearning
dc.titleGeneralized multi-scale stacked sequential learning for multi-class classification
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
622017.pdf
Mida:
2.16 MB
Format:
Adobe Portable Document Format