Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead

dc.contributor.authorVilas, J. L.
dc.contributor.authorTabassum, N.
dc.contributor.authorMota, J.
dc.contributor.authorMaluenda Niubó, David
dc.contributor.authorJiménez-Moreno, Amaya
dc.contributor.authorMajtner, T.
dc.contributor.authorCarazo, J. M.
dc.contributor.authorActon, S. T.
dc.contributor.authorSorzano, C. O. S.
dc.date.accessioned2021-06-16T08:48:49Z
dc.date.available2021-06-16T08:48:49Z
dc.date.issued2018-10
dc.date.updated2021-06-16T08:48:49Z
dc.description.abstractElectron cryomicroscopy (cryo-EM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize molecules such as ribosomes, viruses, and ion channels, for example. Obtaining structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryo-EM a scientific rebirth. Because of imaging improvements, image processing and analysis of the resultant images have increased the resolution such that molecular structures can be resolved at the atomic level. Cryo-EM is ripe with stimulating image processing challenges. In this article, we will touch on the most essential in order to build an accurate structural three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. With this review, however, we will highlight fresh approaches from new and varied angles for each image processing sub-problem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking. Keywords: Cryo-electron microscopy, Single Particle Analysis, Image processing algorithms.
dc.format.extent55 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec710025
dc.identifier.issn0959-440X
dc.identifier.urihttps://hdl.handle.net/2445/178454
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.sbi.2018.11.004
dc.relation.ispartofCurrent Opinion in Structural Biology, 2018, vol. 52, p. 127-145
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/653706/EU//iNEXT
dc.relation.urihttps://doi.org/10.1016/j.sbi.2018.11.004
dc.rightscc-by-nc-nd (c) Current Opinion, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationMicroscòpia electrònica
dc.subject.classificationAlgorismes
dc.subject.otherElectron microscopy
dc.subject.otherAlgorithms
dc.titleAdvances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
710025.pdf
Mida:
2.22 MB
Format:
Adobe Portable Document Format