Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Quiñones, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223242

Prediction of the band gap in 2D materials using active learning

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Accurate band gap prediction of two-dimensional materials holds significant scientific and technological value for the development of electronic and optoelectronic devices. In contrast to the high computational cost associated with traditional first-principles methods, machine learning offers a promising and cost-effective alternative for band gap prediction. In this work, we demonstrate that the combination of artificial neural networks and an active learning algorithm leads to a highly data-efficient method for predicting band gaps of 2D materials while maintaining accuracy, with L1-regularization analyzing feature selection. This approach achieves a computational cost reduction by shrinking the original dataset by 80% compared to traditional training approaches

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Jose Hugo Garcia

Citació

Citació

QUIÑONES ANDRADE, Alba. Prediction of the band gap in 2D materials using active learning. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/223242]

Exportar metadades

JSON - METS

Compartir registre