Prediction of the band gap in 2D materials using active learning
| dc.contributor.advisor | García, Jose H. | |
| dc.contributor.author | Quiñones Andrade, Alba | |
| dc.date.accessioned | 2025-09-18T11:33:17Z | |
| dc.date.available | 2025-09-18T11:33:17Z | |
| dc.date.issued | 2025-06 | |
| dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Jose Hugo Garcia | ca |
| dc.description.abstract | Accurate band gap prediction of two-dimensional materials holds significant scientific and technological value for the development of electronic and optoelectronic devices. In contrast to the high computational cost associated with traditional first-principles methods, machine learning offers a promising and cost-effective alternative for band gap prediction. In this work, we demonstrate that the combination of artificial neural networks and an active learning algorithm leads to a highly data-efficient method for predicting band gaps of 2D materials while maintaining accuracy, with L1-regularization analyzing feature selection. This approach achieves a computational cost reduction by shrinking the original dataset by 80% compared to traditional training approaches | ca |
| dc.format.extent | 9 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/223242 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Quiñones, 2025 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Física | |
| dc.subject.classification | Ciència dels materials | cat |
| dc.subject.classification | Física computacional | cat |
| dc.subject.classification | Treballs de fi de grau | cat |
| dc.subject.other | Materials science | eng |
| dc.subject.other | Computational physics | eng |
| dc.subject.other | Bachelor's theses | eng |
| dc.title | Prediction of the band gap in 2D materials using active learning | eng |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- QUIÑONES ANDRADE ALBA-R.pdf
- Mida:
- 3.88 MB
- Format:
- Adobe Portable Document Format
- Descripció: