Prediction of the band gap in 2D materials using active learning

dc.contributor.advisorGarcía, Jose H.
dc.contributor.authorQuiñones Andrade, Alba
dc.date.accessioned2025-09-18T11:33:17Z
dc.date.available2025-09-18T11:33:17Z
dc.date.issued2025-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Jose Hugo Garciaca
dc.description.abstractAccurate band gap prediction of two-dimensional materials holds significant scientific and technological value for the development of electronic and optoelectronic devices. In contrast to the high computational cost associated with traditional first-principles methods, machine learning offers a promising and cost-effective alternative for band gap prediction. In this work, we demonstrate that the combination of artificial neural networks and an active learning algorithm leads to a highly data-efficient method for predicting band gaps of 2D materials while maintaining accuracy, with L1-regularization analyzing feature selection. This approach achieves a computational cost reduction by shrinking the original dataset by 80% compared to traditional training approachesca
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223242
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Quiñones, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationCiència dels materialscat
dc.subject.classificationFísica computacionalcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMaterials scienceeng
dc.subject.otherComputational physicseng
dc.subject.otherBachelor's theseseng
dc.titlePrediction of the band gap in 2D materials using active learningeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
QUIÑONES ANDRADE ALBA-R.pdf
Mida:
3.88 MB
Format:
Adobe Portable Document Format
Descripció: