Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/183476

A Survey on Uncertainty Estimation in Deep Learning Classification Systems from a Bayesian Perspective

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Decision-making based on machine learning systems, especially when this decision-making can affect humanlives, is a subject of maximum interest in the Machine Learning community. It is, therefore, necessary to equipthese systems with a means of estimating uncertainty in the predictions they emit in order to help practition-ers make more informed decisions. In the present work, we introduce the topic of uncertainty estimation, andwe analyze the peculiarities of such estimation when applied to classification systems. We analyze differentmethods that have been designed to provide classification systems based on deep learning with mechanismsfor measuring the uncertainty of their predictions. We will take a look at how this uncertainty can be mod-eled and measured using different approaches, as well as practical considerations of different applications ofuncertainty. Moreover, we review some of the properties that should be borne in mind when developing suchmetrics. All in all, the present survey aims at providing a pragmatic overview of the estimation of uncertaintyin classification systems that can be very useful for both academic research and deep learning practitioners.

Citació

Citació

MENA ROLDÁN, José, PUJOL VILA, Oriol, VITRIÀ I MARCA, Jordi. A Survey on Uncertainty Estimation in Deep Learning Classification Systems from a Bayesian Perspective. _ACM Computing Surveys_. 2021. [consulta: 14 de gener de 2026]. ISSN: 0360-0300. [Disponible a: https://hdl.handle.net/2445/183476]

Exportar metadades

JSON - METS

Compartir registre