A Survey on Uncertainty Estimation in Deep Learning Classification Systems from a Bayesian Perspective

dc.contributor.authorMena Roldán, José
dc.contributor.authorPujol Vila, Oriol
dc.contributor.authorVitrià i Marca, Jordi
dc.date.accessioned2022-02-24T08:20:05Z
dc.date.available2022-02-24T08:20:05Z
dc.date.issued2021-10-08
dc.date.updated2022-02-24T08:20:05Z
dc.description.abstractDecision-making based on machine learning systems, especially when this decision-making can affect humanlives, is a subject of maximum interest in the Machine Learning community. It is, therefore, necessary to equipthese systems with a means of estimating uncertainty in the predictions they emit in order to help practition-ers make more informed decisions. In the present work, we introduce the topic of uncertainty estimation, andwe analyze the peculiarities of such estimation when applied to classification systems. We analyze differentmethods that have been designed to provide classification systems based on deep learning with mechanismsfor measuring the uncertainty of their predictions. We will take a look at how this uncertainty can be mod-eled and measured using different approaches, as well as practical considerations of different applications ofuncertainty. Moreover, we review some of the properties that should be borne in mind when developing suchmetrics. All in all, the present survey aims at providing a pragmatic overview of the estimation of uncertaintyin classification systems that can be very useful for both academic research and deep learning practitioners.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec714838
dc.identifier.issn0360-0300
dc.identifier.urihttps://hdl.handle.net/2445/183476
dc.language.isoeng
dc.publisherAssociation for Computing Machinery
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1145/3477140
dc.relation.ispartofACM Computing Surveys, 2021
dc.relation.urihttps://doi.org/10.1145/3477140
dc.rights(c) Association for Computing Machinery, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationEstadística bayesiana
dc.subject.classificationPresa de decisions (Estadística)
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherMachine learning
dc.subject.otherLearning classifier systems
dc.subject.otherBayesian statistical decision
dc.subject.otherStatistical decision
dc.subject.otherNeural networks (Computer science)
dc.titleA Survey on Uncertainty Estimation in Deep Learning Classification Systems from a Bayesian Perspective
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
714838.pdf
Mida:
1.44 MB
Format:
Adobe Portable Document Format