Machine Learning Analysis of Single‐Voxel Proton MR Spectroscopy for Differentiating Solitary Fibrous Tumors and Meningiomas

dc.contributor.authorTóth, Lili Fanni
dc.contributor.authorMajós Torró, Carlos
dc.contributor.authorPons Escoda, Albert
dc.contributor.authorArús, Carles
dc.contributor.authorJulià Sapé, Margarida
dc.date.accessioned2025-06-17T11:09:20Z
dc.date.available2025-06-17T11:09:20Z
dc.date.issued2025-04-05
dc.date.updated2025-06-10T10:49:54Z
dc.description.abstractSolitary fibrous tumor (SFT), formerly known as hemangiopericytoma, is an uncommon brain tumor often confused with meningioma on MRI. Unlike meningiomas, SFTs exhibit a myoinositol peak on magnetic resonance spectroscopy (MRS). This study aimed to develop automated classifiers to distinguish SFT from meningioma grades using MRS data from a 26-year patient cohort.Four classification tasks were performed on short echo (SE), long echo (LE) time, and concatenated SE + LE spectra, with datasets split into 80% training and 20% testing sets. Sequential forward feature selection and linear discriminant analysis identified features to distinguish between meningioma Grade 1 (Men-1), meningioma grade 2 (Men-2), meningioma grade 3 (Men-3), and SFT (the 4-class classifier); Men-1 from Men-2 + 3 + SFT; meningioma (all) from SFT; and Men-1 from Men-2 + 3 and SFT. The best classifier was defined by the smallest balanced error rate (BER) in the testing phase.A total of 136 SE cases and 149 LE cases were analyzed. The best features in the 4-class classifier were myoinositol and alanine at SE, and myoinositol, glutamate, and glutamine at LE. Myoinositol alone distinguished SFT from meningiomas. Differentiating Men-1 from Men-2 was not possible with MRS, and combining higher meningioma grades did not improve distinction from Men-1. Notably, combining short and long echo times (TE) enhances classification performance, particularly in challenging outlier cases. Furthermore, the robust classifier demonstrates efficacy even when dealing with spectra of suboptimal quality. The resulting classifier is available as Supporting Information of the publication. Extensive documentation is provided, and the software is free and open to all users without a login requirement.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn1099-1492
dc.identifier.pmid40186532
dc.identifier.urihttps://hdl.handle.net/2445/221598
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/nbm.70032
dc.relation.ispartofNMR in Biomedicine, 2025, vol. 38, num. 5, p. 1-13
dc.relation.urihttps://doi.org/10.1002/nbm.70032
dc.rightscc-by-nc-nd (c) Tóth et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationTumors cerebrals
dc.subject.classificationDiagnòstic per la imatge
dc.subject.classificationClassificació de tumors
dc.subject.otherBrain tumors
dc.subject.otherDiagnostic imaging
dc.subject.otherTumors classification
dc.titleMachine Learning Analysis of Single‐Voxel Proton MR Spectroscopy for Differentiating Solitary Fibrous Tumors and Meningiomas
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
NMR in Biomedicine - 2025 - Toth - Machine Learning Analysis of Single‐Voxel Proton MR Spectroscopy for Differentiating.pdf
Mida:
3.06 MB
Format:
Adobe Portable Document Format