On the construction and algebraic semantics of relevance logic

dc.contributor.advisorGispert Brasó, Joan
dc.contributor.authorGastón Codony, Andrea
dc.date.accessioned2021-05-05T08:28:18Z
dc.date.available2021-05-05T08:28:18Z
dc.date.issued2020-06-21
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Joan Gispert Brasóca
dc.description.abstract[en] The truth-functional interpretation of classical implication gives rise to relevance paradoxes, since it doesn't adequately model our usual understanding of a valid implication, which assumes the antecedent is relevant to the truth of the consequent. This work gives an overview of the system $\mathbf{R}$ of relevance logic, which aims to avoid said paradoxes. We present the logic $\mathbf{R}$ with a Hilbert calculus and then prove the Variable-sharing Theorem. We also give an equivalent algebraic semantics for $\mathbf{R}$ and a semantics for its first-degree entailment fragment.ca
dc.format.extent68 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/177032
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Andrea Gastón Codony, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationLògica matemàticaca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationLògica algebraicaca
dc.subject.otherMathematical logicen
dc.subject.otherBachelor's theses
dc.subject.otherAlgebraic logicen
dc.titleOn the construction and algebraic semantics of relevance logicca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
177032.pdf
Mida:
1.15 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria