On the local and global phase portrait of the 1-dimensional complex equation $z{\dot}= f (z)$
| dc.contributor.advisor | Fontich, Ernest, 1955- | |
| dc.contributor.advisor | Jarque i Ribera, Xavier | |
| dc.contributor.author | Song, Jieyao | |
| dc.date.accessioned | 2015-02-17T10:29:43Z | |
| dc.date.available | 2015-02-17T10:29:43Z | |
| dc.date.issued | 2014-09-13 | |
| dc.description | Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2014, Director: Ernest Fontich i Xavier Jarque | ca |
| dc.description.abstract | This work consists of studying the complex first order differential equation $z{\dot} = \dfrac{dz}{dt}=f(z),\hspace{2cm} z \in\mathbb{C},t\in\mathbb{R}$ where $f$ is an analytic function of $C$ except, possibly, at isolated singularities. This is a rather general family of complex functions that includes polynomial, rational, holomorphic and entire functions, and functions with isolated essential singularities. | ca |
| dc.format.extent | 64 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/63023 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-sa (c) Jieyao Song, 2014 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/es/ | |
| dc.source | Màster Oficial - Matemàtica Avançada | |
| dc.subject.classification | Equacions diferencials ordinàries | cat |
| dc.subject.classification | Varietats (Matemàtica) | cat |
| dc.subject.classification | Treballs de fi de màster | cat |
| dc.subject.other | Ordinary differential equations | eng |
| dc.subject.other | Manifolds (Mathematics) | eng |
| dc.subject.other | Master's theses | eng |
| dc.title | On the local and global phase portrait of the 1-dimensional complex equation $z{\dot}= f (z)$ | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- memoria.pdf
- Mida:
- 4.75 MB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria