In silico antibody engineering for SARS-CoV-2 detection

dc.contributor.authorMartí Ballesté, Dídac
dc.contributor.authorMartin Martinez, Eduard
dc.contributor.authorTorras Costa, Joan
dc.contributor.authorBertran Cànovas, Òscar
dc.contributor.authorTuron, Pau
dc.contributor.authorAlemán Llanso, Carlos
dc.date.accessioned2022-01-04T14:28:52Z
dc.date.available2022-01-04T14:28:52Z
dc.date.issued2021-10-07
dc.date.updated2022-01-03T07:23:58Z
dc.description.abstractEngineered immunoglobulin-G molecules (IgGs) are of wide interest for the development of detection elements in protein-based biosensors with clinical applications. The strategy usually employed for the de novo design of such engineered IgGs consists on merging fragments of the three-dimensional structure of a native IgG, which is immobilized on the biosensor surface, and of an antibody with an exquisite target specificity and affinity. In this work conventional and accelerated classical molecular dynamics (cMD and aMD, respectively) simulations have been used to propose two IgG-like antibodies for COVID-19 detection. More specifically, the crystal structure of the IgG1 B12 antibody, which inactivates the human immunodeficiency virus-1, has been merged with the structure of the antibody CR3022 Fab tightly bounded to SARS-CoV-2 receptor-binding domain (RBD) and the structure of the 5309 antibody Fab fragment complexed with SARS-CoV-2 RBD. The two constructed antibodies, named IgG1-CR3022 and IgG1-S309, respectively, have been immobilized on a stable gold surface through a linker. Analyses of the influence of both the merging strategy and the substrate on the stability of the two constructs indicate that the IgG1-S309 antibody better preserves the neutralizing structure than the IgG1-CR3022 one. Overall, results indicate that the IgG1-S309 is appropriated for the generation of antibody based sensors for COVID-19 diagnosis. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6534022
dc.identifier.issn2001-0370
dc.identifier.pmid34642596
dc.identifier.urihttps://hdl.handle.net/2445/182106
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.csbj.2021.10.010
dc.relation.ispartofComputational And Structural Biotechnology Journal, 2021, vol. 19, p. 5525-5534
dc.relation.urihttps://doi.org/10.1016/j.csbj.2021.10.010
dc.rightscc by-nc-nd (c) Martí Ballesté, Dídac et al, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
dc.subject.classificationSARS-CoV-2
dc.subject.classificationImmunoglobulines
dc.subject.classificationSimulació per ordinador
dc.subject.otherSARS-CoV-2
dc.subject.otherImmunoglobulins
dc.subject.otherComputer simulation
dc.titleIn silico antibody engineering for SARS-CoV-2 detection
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
12537_6534022_1-s2.0-s2001037021004323-main_1.pdf
Mida:
3.99 MB
Format:
Adobe Portable Document Format