Carregant...
Miniatura

Tipus de document

Part del llibre

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc (c) Heredia Lidón, Álvaro et al, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/219442

Landmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structures

Títol de la revista

ISSN de la revista

Títol del volum

Resum

As shape alterations in three-dimensional biological structures are as- sociated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks -originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.

Descripció

Citació

Citació

HEREDIA LIDÓN, Álvaro, GARCÍA MASCAREL, Christian, ECHEVERRY, Luis miguel, HERRERA ESCARTÍN, Daniel, FORTEA ORMAECHEA, Juan, POMAROL-CLOTET, Edith, FATJÓ-VILAS MESTRE, Mar, MARTÍNEZ ABADÍAS, Neus, SEVILLANO, Xavier. Landmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structures. _Capítol del llibre: Alsinet_. Teresa. Vol.   Vilasís, núm. Xavier, pàgs. García. [consulta: 24 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/219442]

Exportar metadades

JSON - METS

Compartir registre