Landmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structures

dc.contributor.authorHeredia Lidón, Álvaro
dc.contributor.authorGarcía Mascarel, Christian
dc.contributor.authorEcheverry, Luis Miguel
dc.contributor.authorHerrera Escartín, Daniel
dc.contributor.authorFortea Ormaechea, Juan
dc.contributor.authorPomarol-Clotet, Edith
dc.contributor.authorFatjó-Vilas Mestre, Mar
dc.contributor.authorMartínez Abadías, Neus, 1978-
dc.contributor.authorSevillano, Xavier
dc.date.accessioned2025-03-04T15:23:11Z
dc.date.available2025-03-04T15:23:11Z
dc.date.issued2024
dc.description.abstractAs shape alterations in three-dimensional biological structures are as- sociated to numerous pathological processes, quantitative shape analysis for obtaining phenotypic biomarkers of diagnostic potential has become a prominent research area. In this context, the automatic detection of landmarks on 3D anatomical structures is crucial for developing high-throughput phenotyping tools. This study evaluates the performance of multi-view consensus convolutional networks -originally developed for facial landmarking– in automatically detecting landmarks on three different 3D anatomical structures: the face, the upper respiratory airways and the brain hippocampi. Leveraging magnetic resonance imaging datasets, we trained multiple models and assessed their accuracy against manual annotations, while analyzing the impact of different network hyperparameters on the results.ca
dc.format.extent4 p.
dc.format.mediumapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/219442
dc.language.isoengca
dc.publisherIOS Pressca
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3233/FAIA240438
dc.relation.ispartofCapítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 209-212
dc.relation.urihttps://doi.org/10.3233/FAIA240438
dc.rightscc by-nc (c) Heredia Lidón, Álvaro et al, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceLlibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationMarcadors bioquímics
dc.subject.otherArtificial intelligence
dc.subject.otherBiochemical markers
dc.titleLandmark anything: multi-view consensus convolutional networks applied to the 3D landmarking of Anatomical Structuresca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Heredia et al 2024_Landmark anything.pdf
Mida:
340.58 KB
Format:
Adobe Portable Document Format
Descripció:

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
250 B
Format:
Item-specific license agreed upon to submission
Descripció: