Dolbeault cohomology for almost complex manifolds

dc.contributor.authorCirici, Joana
dc.contributor.authorWilson, Scott O.
dc.date.accessioned2021-12-23T08:08:02Z
dc.date.issued2021-11-19
dc.date.updated2021-12-23T08:08:03Z
dc.description.abstractThis paper extends Dolbeault cohomology and its surrounding theory to arbitrary almost complex manifolds. We define a spectral sequence converging to ordinary cohomology, whose first page is the Dolbeault cohomology, and develop a harmonic theory which injects into Dolbeault cohomology. Lie-theoretic analogues of the theory are developed which yield important calculational tools for Lie groups and nilmanifolds. Finally, we study applications to maximally non-integrable manifolds, including nearly Kähler
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec714851
dc.identifier.issn0001-8708
dc.identifier.urihttps://hdl.handle.net/2445/181976
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.aim.2021.107970
dc.relation.ispartofAdvances in Mathematics, 2021, vol. 391
dc.relation.urihttps://doi.org/10.1016/j.aim.2021.107970
dc.rightscc-by (c) Cirici, Joana et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats complexes
dc.subject.classificationGeometria diferencial global
dc.subject.classificationHomologia
dc.subject.otherComplex manifolds
dc.subject.otherGlobal differential geometry
dc.subject.otherHomology
dc.titleDolbeault cohomology for almost complex manifolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
714851.pdf
Mida:
687.36 KB
Format:
Adobe Portable Document Format