Attribution methods for deep convolutional networks

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorBrasó Andilla, Guillem
dc.date.accessioned2018-10-09T08:25:58Z
dc.date.available2018-10-09T08:25:58Z
dc.date.issued2018-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Jordi Vitrià i Marcaca
dc.description.abstract[en] In recent years, Deep Learning has shown great success across several areas. However, even, though it might provide remarkable accuracy for many tasks, its application in some fields faces a fundamental problem: its predictions are not interpretable. Attribution Methods offer a possible solution in regards to this problem. To do so, they resource to results in Game Theory in order to explain individual decisions made by Deep Learning algorithms. In this work, we will be focusing, specifically, on the application of Attribution Techniques to a subset of Deep Learning algorithms: Convolutional Neural Networks.ca
dc.format.extent58 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/125161
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Guillem Brasó Andilla, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationVisió per ordinadorca
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's theses
dc.subject.otherComputer algorithmsen
dc.subject.otherComputer visionen
dc.titleAttribution methods for deep convolutional networksca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.66 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria