Modeling Glutaric Aciduria Type I in human neuroblastoma cells recapitulates neuronal damage that can be rescued by gene replacement.

dc.contributor.authorMateu Bosch, Anna
dc.contributor.authorSegur-Bailach, Eulalia
dc.contributor.authorGarcía Villoria, Judit
dc.contributor.authorGea Sorli, Sabrina
dc.contributor.authorRuiz, I.
dc.contributor.authorRey Calero, Juan del
dc.contributor.authorCamps, Jordi
dc.contributor.authorGuitart Mampel, Mariona
dc.contributor.authorGarrabou Tornos, Glòria
dc.contributor.authorTort, Frederic
dc.contributor.authorRibes Rubió, Maria Antònia
dc.contributor.authorFillat i Fonts, Cristina
dc.date.accessioned2024-06-20T12:06:12Z
dc.date.available2024-06-20T12:06:12Z
dc.date.issued2024-01-01
dc.date.updated2024-06-20T12:06:17Z
dc.description.abstractGlutaric Aciduria type I (GA1) is a rare neurometabolic disorder caused by mutations in the GDCH gene encoding for glutaryl-CoA dehydrogenase (GCDH) in the catabolic pathway of lysine, hydroxylysine and tryptophan. GCDH deficiency leads to increased concentrations of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body fluids and tissues. These metabolites are the main triggers of brain damage. Mechanistic studies supporting neurotoxicity in mouse models have been conducted. However, the different vulnerability to some stressors between mouse and human brain cells reveals the need to have a reliable human neuronal model to study GA1 pathogenesis. In the present work we generated a GCDH knockout (KO) in the human neuroblastoma cell line SH-SY5Y by CRISPR/Cas9 technology. SH-SY5Y-GCDH KO cells accumulate GA, 3-OHGA, and glutarylcarnitine when exposed to lysine overload. GA or lysine treatment triggered neuronal damage in GCDH deficient cells. SH-SY5Y-GCDH KO cells also displayed features of GA1 pathogenesis such as increased oxidative stress vulnerability. Restoration of the GCDH activity by gene replacement rescued neuronal alterations. Thus, our findings provide a human neuronal cellular model of GA1 to study this disease and show the potential of gene therapy to rescue GCDH deficiency.
dc.format.extent29 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec744309
dc.identifier.idimarina9380568
dc.identifier.issn0969-7128
dc.identifier.pmid37985879
dc.identifier.urihttps://hdl.handle.net/2445/213466
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s41434-023-00428-8
dc.relation.ispartofGene Therapy, 2024, vol. 31, num.1, p. 12-18
dc.relation.urihttps://doi.org/10.1038/s41434-023-00428-8
dc.rights(c) Mateu-Bosch, A. et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationTeràpia genètica
dc.subject.classificationMalalties cerebrals
dc.subject.classificationProteïnes
dc.subject.otherGene therapy
dc.subject.otherBrain diseases
dc.subject.otherProteins
dc.titleModeling Glutaric Aciduria Type I in human neuroblastoma cells recapitulates neuronal damage that can be rescued by gene replacement.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
847230.pdf
Mida:
1.2 MB
Format:
Adobe Portable Document Format