Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Bolancé Losilla et al., 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/118279

Multivariate count data generalized linear models: Three approaches based on the Sarmanov Distribution [WP]

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Starting from the question: “What is the accident risk of an insured?”, this paper considers a multivariate approach by taking into account three types of accident risks and the possible dependence between them. Driven by a real data set, we propose three trivariate Sarmanov distributions with generalized linear models (GLMs) for marginals and incorporate various individual characteristics of the policyholders by means of explanatory variables. Since the data set was collected over a longer time period (10 years), we also added each individual’s exposure to risk. To estimate the parameters of the three Sarmanov distributions, we analyze a pseudo-maximumlikelihood method. Finally, the three models are compared numerically with the simpler trivariate Negative Binomial GLM.

Citació

Citació

BOLANCÉ LOSILLA, Catalina, VERNIC, Raluca. Multivariate count data generalized linear models: Three approaches based on the Sarmanov Distribution [WP]. _IREA – Working Papers_. 2017. Vol.  IR17/18. [consulta: 25 de gener de 2026]. ISSN: 1136-8365. [Disponible a: https://hdl.handle.net/2445/118279]

Exportar metadades

JSON - METS

Compartir registre