Carregant...
Tipus de document
Document de treballData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/118279
Multivariate count data generalized linear models: Three approaches based on the Sarmanov Distribution [WP]
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Starting from the question: “What is the accident risk of an insured?”, this paper considers a multivariate approach by taking into account three types of accident risks and the possible dependence between them. Driven by a real data set, we propose three trivariate Sarmanov distributions with generalized linear models (GLMs) for marginals and incorporate various individual characteristics of the policyholders by means of explanatory variables. Since the data set was collected over a longer time period (10 years), we also added each individual’s exposure to risk. To estimate the parameters of the three Sarmanov distributions, we analyze a pseudo-maximumlikelihood method. Finally, the three models are compared numerically with the simpler trivariate Negative Binomial GLM.
Citació
Citació
BOLANCÉ LOSILLA, Catalina, VERNIC, Raluca. Multivariate count data generalized linear models: Three approaches based on the Sarmanov Distribution [WP]. _IREA – Working Papers_. 2017. Vol. IR17/18. [consulta: 25 de gener de 2026]. ISSN: 1136-8365. [Disponible a: https://hdl.handle.net/2445/118279]