Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/128372

Evolutionary computation for macroeconomic forecasting

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The main objective of this study is twofold. First, we propose an empirical modelling approach based on genetic programming to forecast economic growth by means of survey data on expectations. We use evolutionary algorithms to estimate a symbolic regression that links survey-based expectations to a quantitative variable used as a yardstick, deriving mathematical functional forms that approximate the target variable. The set of empirically-generated proxies of economic growth are used as building blocks to forecast the evolution of GDP. Second, we use these estimates of GDP to assess the impact of the 2008 financial crisis on the accuracy of agents' expectations about the evolution of the economic activity in four Scandinavian economies. While we find an improvement in the capacity of agents' to anticipate economic growth after the crisis, predictive accuracy worsens in relation to the period prior to the crisis. The most accurate GDP forecasts are obtained for Sweden.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Evolutionary computation for macroeconomic forecasting. _Computational Economics_. 2019. Vol. 53, núm. 2, pàgs. 833-849. [consulta: 21 de gener de 2026]. ISSN: 0927-7099. [Disponible a: https://hdl.handle.net/2445/128372]

Exportar metadades

JSON - METS

Compartir registre