Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc (c) Morales Ivorra, Isabel et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188700

Assessment of inflammation in patients with rheumatoid arthritis using thermography and machine learning: a fast and automated technique

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Objectives Sensitive detection of joint inflammation in rheumatoid arthritis (RA) is crucial to the success of the treat-to-target strategy. In this study, we characterise a novel machine learning-based computational method to automatically assess joint inflammation in RA using thermography of the hands, a fast and non-invasive imaging technique. Methods We recruited 595 patients with arthritis and osteoarthritis, as well as healthy subjects at two hospitals over 4 years. Machine learning was used to assess joint inflammation from the thermal images of the hands using ultrasound as the reference standard, obtaining a Thermographic Joint Inflammation Score (ThermoJIS). The machine learning model was trained and tuned using data from 449 participants with different types of arthritis, osteoarthritis or without rheumatic disease (development set). The performance of the method was evaluated based on 146 patients with RA (validation set) using Spearman's rank correlation coefficient, area under the receiver-operating curve (AUROC), average precision, sensitivity, specificity, positive and negative predictive value and F1-score. Results ThermoJIS correlated moderately with ultrasound scores (grey-scale synovial hypertrophy=0.49, p<0.001; and power Doppler=0.51, p<0.001). The AUROC for ThermoJIS for detecting active synovitis was 0.78 (95% CI, 0.71 to 0.86; p<0.001). In patients with RA in clinical remission, ThermoJIS values were significantly higher when active synovitis was detected by ultrasound. Conclusions ThermoJIS was able to detect joint inflammation in patients with RA, even in those in clinical remission. These results open an opportunity to develop new tools for routine detection of joint inflammation.

Citació

Citació

MORALES IVORRA, Isabel, NARVÁEZ GARCÍA, Francisco javier, GÓMEZ VAQUERO, Carmen, MORAGUES, Carmen, NOLLA SOLÉ, Joan miquel, NARVÁEZ, José a., MARÍN LÓPEZ, Manuel alejandro. Assessment of inflammation in patients with rheumatoid arthritis using thermography and machine learning: a fast and automated technique. _RMD Open_. 2022. Vol. 8, núm. 2, pàgs. e002458. [consulta: 23 de gener de 2026]. ISSN: 2056-5933. [Disponible a: https://hdl.handle.net/2445/188700]

Exportar metadades

JSON - METS

Compartir registre