Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Deco, Gustavo et al., 2009
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/147800

Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We introduce in this paper a new method for reducing neurodynamical data to an effective diffusion equation, either experimentally or using simulations of biophysically detailed models. The dimensionality of the data is first reduced to the first principal component, and then fitted by the stationary solution of a mean-field-like one-dimensional Langevin equation, which describes the motion of a Brownian particle in a potential. The advantage of such description is that the stationary probability density of the dynamical variable can be easily derived. We applied this method to the analysis of cortical network dynamics during up and down states in an anesthetized animal. During deep anesthesia, intracellularly recorded up and down states transitions occurred with high regularity and could not be adequately described by a one-dimensional diffusion equation. Under lighter anesthesia, however, the distributions of the times spent in the up and down states were better fitted by such a model, suggesting a role for noise in determining the time spent in a particular state.

Citació

Citació

DECO, Gustavo, MARTÍ, Daniel, LEDBERG, Anders, REIG, Ramon, SÁNCHEZ-VIVES, María victoria. Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics. _PLoS Computational Biology_. 2009. Vol. 5, núm. 12, pàgs. e1000587. [consulta: 22 de gener de 2026]. ISSN: 1553-734X. [Disponible a: https://hdl.handle.net/2445/147800]

Exportar metadades

JSON - METS

Compartir registre