Discrimination of beers by cyclic voltammetry using a single carbon screen-printed electrode

dc.contributor.authorRoselló, Adam
dc.contributor.authorSerrano i Plana, Núria
dc.contributor.authorDíaz Cruz, José Manuel
dc.contributor.authorAriño Blasco, Cristina
dc.date.accessioned2021-04-23T10:15:40Z
dc.date.available2022-04-11T05:10:20Z
dc.date.issued2021-04-09
dc.date.updated2021-04-23T10:15:40Z
dc.description.abstractA fast, simple and costless methodology without sample pre-treatment is proposed for the discrimination of beers. It is based on cyclic voltammetry (CV) using commercial carbon screen-printed electrodes (SPCE) and includes a correction of the signals measured with different SPCE units. Data are submitted to partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA), which allow a reasonable classification of the beers. Also, CV data from beers can be used to predict their alcoholic degree by partial least squares (PLS) and artificial neural networks (ANN). In general, non-linear methods provide better results than linear ones.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711650
dc.identifier.issn1040-0397
dc.identifier.urihttps://hdl.handle.net/2445/176679
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/elan.202060515
dc.relation.ispartofElectroanalysis, 2021, vol. 33, num. 4, p. 864 -872
dc.relation.urihttps://doi.org/10.1002/elan.202060515
dc.rights(c) Wiley-VCH, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationVoltametria
dc.subject.classificationCervesa
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherVoltammetry
dc.subject.otherBeer
dc.subject.otherNeural networks (Computer science)
dc.titleDiscrimination of beers by cyclic voltammetry using a single carbon screen-printed electrode
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711650.pdf
Mida:
1.48 MB
Format:
Adobe Portable Document Format