Developing a Predictive Model for Significant Prostate Cancer Detection in Prostatic Biopsies from Seven Clinical Variables: Is Machine Learning Superior to Logistic Regression?

dc.contributor.authorMorote, Juan
dc.contributor.authorMiro, Berta
dc.contributor.authorHernando Sánchez, Patricia
dc.contributor.authorPaesano, Nahuel
dc.contributor.authorPicola, Natalia
dc.contributor.authorMuñoz Rodriguez, Jesús
dc.contributor.authorRuiz Plazas, Xavier
dc.contributor.authorMuñoz Rivero, Marta Viridiana
dc.contributor.authorCelma, Ana
dc.contributor.authorGarcía de Manuel, Gemma
dc.contributor.authorServian, Pol
dc.contributor.authorAbascal Junquera, José Maria
dc.contributor.authorTrilla Herrera, Enrique
dc.contributor.authorMéndez, Olga
dc.date.accessioned2025-06-20T10:28:27Z
dc.date.available2025-06-20T10:28:27Z
dc.date.issued2025-03-25
dc.date.updated2025-06-10T13:44:35Z
dc.description.abstractObjective: This study compares machine learning (ML) and logistic regression (LR) algorithms in developing a predictive model for sPCa using the seven predictive variables from the Barcelona (BCN-MRI) predictive model. Method: A cohort of 5005 men suspected of having PCa who underwent MRI and targeted and/or systematic biopsies was used for training, testing, and validation. A feedforward neural network (FNN)-based SimpleNet model (GMV) and a logistic regression-based model (BCN) were developed. The models were evaluated for discrimination ability, precision-recall, net benefit, and clinical utility. Both models demonstrated strong predictive performance. Results: The GMV model achieved an area under the curve of 0.88 in training and 0.85 in test cohorts (95% CI: 0.83-0.90), while the BCN model reached 0.85 and 0.84 (95% CI: 0.82-0.87), respectively (p > 0.05). The GMV model exhibited higher recall, making it more suitable for clinical scenarios prioritizing sensitivity, whereas the BCN model demonstrated higher precision and specificity, optimizing the reduction of unnecessary biopsies. Both models provided similar clinical benefit over biopsying all men, reducing unnecessary procedures by 27.5-29% and 27-27.5% of prostate biopsies at 95% sensitivity, respectively (p > 0.05). Conclusions: Our findings suggest that both ML and LR models offer high accuracy in sPCa detection, with ML exhibiting superior recall and LR optimizing specificity. These results highlight the need for model selection based on clinical priorities.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2072-6694
dc.identifier.pmid40227611
dc.identifier.urihttps://hdl.handle.net/2445/221672
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/cancers17071101
dc.relation.ispartofCancers, 2025, vol. 17, num. 7
dc.relation.urihttps://doi.org/10.3390/cancers17071101
dc.rightscc-by (c) Morote, Juan et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCàncer de pròstata
dc.subject.classificationAprenentatge profund
dc.subject.classificationDiagnòstic
dc.subject.otherProstate cancer
dc.subject.otherDeep learning (Machine learning)
dc.subject.otherDiagnosis
dc.titleDeveloping a Predictive Model for Significant Prostate Cancer Detection in Prostatic Biopsies from Seven Clinical Variables: Is Machine Learning Superior to Logistic Regression?
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
cancers-17-01101-v4.pdf
Mida:
3.26 MB
Format:
Adobe Portable Document Format