Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-by-nc-sa (c) Anna Bach Valls, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/130481

Word2vec embeddings for playlist recommendation

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] We present an ML approach to musical playlist recommendation. Using the algorithm Word2Vec, a shallow two-layer neural network trained to reconstruct linguistic context of words, we have created several embeddings using tracks and playlist titles as words of an artificial vocabulary. Some experiments with different trade-offs between the diversity and the popularity of songs in playlists are analyzed and discussed. By means of combining a tracks embedding and a titles embedding our recommender has reached 19 percent of accuracy. Our model has been created and trained using the MPD (million playlists dataset) given by Spotify as part of the RecSys Challenge 2018.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Santi Seguí Mesquida i Guillem Pascual i Guinovart

Citació

Citació

BACH VALLS, Anna. Word2vec embeddings for playlist recommendation. [consulta: 21 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/130481]

Exportar metadades

JSON - METS

Compartir registre