Word2vec embeddings for playlist recommendation

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.advisorPascual i Guinovart, Guillem
dc.contributor.authorBach Valls, Anna
dc.date.accessioned2019-03-18T11:40:38Z
dc.date.available2019-03-18T11:40:38Z
dc.date.issued2018-06
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Santi Seguí Mesquida i Guillem Pascual i Guinovartca
dc.description.abstract[en] We present an ML approach to musical playlist recommendation. Using the algorithm Word2Vec, a shallow two-layer neural network trained to reconstruct linguistic context of words, we have created several embeddings using tracks and playlist titles as words of an artificial vocabulary. Some experiments with different trade-offs between the diversity and the popularity of songs in playlists are analyzed and discussed. By means of combining a tracks embedding and a titles embedding our recommender has reached 19 percent of accuracy. Our model has been created and trained using the MPD (million playlists dataset) given by Spotify as part of the RecSys Challenge 2018.ca
dc.format.extent53 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/130481
dc.language.isoengca
dc.rightsmemòria: cc-by-nc-sa (c) Anna Bach Valls, 2018
dc.rightscodi: GPL (c) Anna Bach Valls, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationSistemes d'ajuda a la decisióca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationMúsicaca
dc.subject.otherDecision support systemsen
dc.subject.otherNeural networksen
dc.subject.otherComputer softwareen
dc.subject.otherMusicen
dc.subject.otherBachelor's thesesen
dc.titleWord2vec embeddings for playlist recommendationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
2.56 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.59 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria