Regression-based imputation of explanatory discrete missing data

dc.contributor.authorHernández-Herrera, Gilma
dc.contributor.authorNavarro, Albert
dc.contributor.authorMoriña, David
dc.date.accessioned2024-10-16T13:49:38Z
dc.date.available2024-10-16T13:49:38Z
dc.date.issued2024-09-01
dc.date.updated2024-10-16T13:49:38Z
dc.description.abstractImputation of missing values is a strategy for handling non-responses in surveys or data loss in measurement processes, which may be more effective than ignoring the losses and omitting them. The characteristics of variables presenting missing values must be considered when choosing the imputation method to be used; in particular when the variable is a count the literature dealing with this issue is scarce. If the variable has an excess of zeros it is necessary to consider models including parameters for handling zero-inflation. Likewise, if problems of over- or under-dispersion are observed, generalizations of the Poisson, such as the Hermite or Conway Maxwell Poisson distributions are recommended for carrying out imputation. The aim of this study was to assess the performance of various regression models in the imputation of a discrete variable based on Poisson generalizations, in comparison with classical counting models, through a comprehensive simulation study considering a variety of scenarios and a real data example. To do so we compared the results of estimations using only complete data, and using imputations based on the most common count models. The COMPoisson distribution provides in general better results in any dispersion scenario, especially when the amount of missing information is large.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec732907
dc.identifier.issn0361-0918
dc.identifier.urihttps://hdl.handle.net/2445/215820
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1080/03610918.2022.2149805
dc.relation.ispartofCommunications in Statistics-Simulation and Computation, 2024, vol. 53, num.9, p. 4363-4379
dc.relation.urihttps://doi.org/10.1080/03610918.2022.2149805
dc.rights(c) Taylor & Francis, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationVariables (Matemàtica)
dc.subject.classificationMatemàtica discreta
dc.subject.otherRegression analysis
dc.subject.otherVariables (Mathematics)
dc.subject.otherDiscrete mathematics
dc.titleRegression-based imputation of explanatory discrete missing data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
259891.pdf
Mida:
376.68 KB
Format:
Adobe Portable Document Format