Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/218042
Importance attribution in neural networks by means of persistence landscapes of time series
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was 94.00% averaged after five runs of a neural network, while the original signals achieved 98.41% and landscape-reduced signals yielded 97.04%.
Matèries (anglès)
Citació
Citació
FERRÀ MARCÚS, Aina, CASACUBERTA, Carles, PUJOL VILA, Oriol. Importance attribution in neural networks by means of persistence landscapes of time series. _Neural Computing & Applications_. 2023. Vol. 35, núm. 20143-20156. [consulta: 24 de gener de 2026]. ISSN: 0941-0643. [Disponible a: https://hdl.handle.net/2445/218042]