Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Aina Ferrà Marcús et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/218042

Importance attribution in neural networks by means of persistence landscapes of time series

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was 94.00% averaged after five runs of a neural network, while the original signals achieved 98.41% and landscape-reduced signals yielded 97.04%.

Citació

Citació

FERRÀ MARCÚS, Aina, CASACUBERTA, Carles, PUJOL VILA, Oriol. Importance attribution in neural networks by means of persistence landscapes of time series. _Neural Computing & Applications_. 2023. Vol. 35, núm. 20143-20156. [consulta: 24 de gener de 2026]. ISSN: 0941-0643. [Disponible a: https://hdl.handle.net/2445/218042]

Exportar metadades

JSON - METS

Compartir registre