Importance attribution in neural networks by means of persistence landscapes of time series

dc.contributor.authorFerrà Marcús, Aina
dc.contributor.authorCasacuberta, Carles
dc.contributor.authorPujol Vila, Oriol
dc.date.accessioned2025-01-28T09:01:55Z
dc.date.available2025-01-28T09:01:55Z
dc.date.issued2023-07-19
dc.date.updated2025-01-28T09:01:56Z
dc.description.abstractThis article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was 94.00% averaged after five runs of a neural network, while the original signals achieved 98.41% and landscape-reduced signals yielded 97.04%.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec733944
dc.identifier.issn0941-0643
dc.identifier.urihttps://hdl.handle.net/2445/218042
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00521-023-08731-6
dc.relation.ispartofNeural Computing & Applications, 2023, vol. 35, p. 20143-20156
dc.relation.urihttps://doi.org/10.1007/s00521-023-08731-6
dc.rightscc by (c) Aina Ferrà Marcús et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.classificationHomologia
dc.subject.otherNeural networks (Computer science)
dc.subject.otherTime-series analysis
dc.subject.otherHomology
dc.titleImportance attribution in neural networks by means of persistence landscapes of time series
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
260926.pdf
Mida:
1.8 MB
Format:
Adobe Portable Document Format