Importance attribution in neural networks by means of persistence landscapes of time series
| dc.contributor.author | Ferrà Marcús, Aina | |
| dc.contributor.author | Casacuberta, Carles | |
| dc.contributor.author | Pujol Vila, Oriol | |
| dc.date.accessioned | 2025-01-28T09:01:55Z | |
| dc.date.available | 2025-01-28T09:01:55Z | |
| dc.date.issued | 2023-07-19 | |
| dc.date.updated | 2025-01-28T09:01:56Z | |
| dc.description.abstract | This article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was 94.00% averaged after five runs of a neural network, while the original signals achieved 98.41% and landscape-reduced signals yielded 97.04%. | |
| dc.format.extent | 14 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 733944 | |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.uri | https://hdl.handle.net/2445/218042 | |
| dc.language.iso | eng | |
| dc.publisher | Springer Verlag | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1007/s00521-023-08731-6 | |
| dc.relation.ispartof | Neural Computing & Applications, 2023, vol. 35, p. 20143-20156 | |
| dc.relation.uri | https://doi.org/10.1007/s00521-023-08731-6 | |
| dc.rights | cc by (c) Aina Ferrà Marcús et al., 2023 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Xarxes neuronals (Informàtica) | |
| dc.subject.classification | Anàlisi de sèries temporals | |
| dc.subject.classification | Homologia | |
| dc.subject.other | Neural networks (Computer science) | |
| dc.subject.other | Time-series analysis | |
| dc.subject.other | Homology | |
| dc.title | Importance attribution in neural networks by means of persistence landscapes of time series | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1