A Jordan theorem for the diffeomorphism group of some manifolds
| dc.contributor.author | Mundet i Riera, Ignasi | |
| dc.date.accessioned | 2016-03-17T16:51:45Z | |
| dc.date.available | 2016-03-17T16:51:45Z | |
| dc.date.issued | 2010 | |
| dc.date.updated | 2016-03-17T16:51:50Z | |
| dc.description.abstract | Let $ M$ be a compact connected $ n$-dimensional smooth manifold admitting an unramified covering $ \widetilde{M}\to M$ with cohomology classes $ \alpha_1,\dots,\alpha_n \in H^1(\widetilde{M};\mathbb{Z})$ satisfying $ \alpha_1\cup\dots\cup\alpha_n\neq 0$. We prove that there exists some number $ c$ such that: (1) any finite group of diffeomorphisms of $ M$ contains an abelian subgroup of index at most $ c$; (2) if $ \chi(M)\neq 0$, then any finite group of diffeomorphisms of $ M$ has at most $ c$ elements. We also give a new and short proof of Jordan's classical theorem for finite subgroups of $ \mathrm{GL}(n,\mathbb{C})$, of which our result is an analogue for $ \mathrm{Diff}(M)$. | |
| dc.format.extent | 10 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 609884 | |
| dc.identifier.issn | 0002-9939 | |
| dc.identifier.uri | https://hdl.handle.net/2445/96596 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-10-10221-4 | |
| dc.relation.ispartof | Proceedings of the American Mathematical Society, 2010, vol. 138, p. 2253-2262 | |
| dc.relation.uri | http://dx.doi.org/10.1090/S0002-9939-10-10221-4 | |
| dc.rights | (c) American Mathematical Society (AMS), 2010 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Física matemàtica | |
| dc.subject.other | Mathematical physics | |
| dc.title | A Jordan theorem for the diffeomorphism group of some manifolds | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1