A Jordan theorem for the diffeomorphism group of some manifolds

dc.contributor.authorMundet i Riera, Ignasi
dc.date.accessioned2016-03-17T16:51:45Z
dc.date.available2016-03-17T16:51:45Z
dc.date.issued2010
dc.date.updated2016-03-17T16:51:50Z
dc.description.abstractLet $ M$ be a compact connected $ n$-dimensional smooth manifold admitting an unramified covering $ \widetilde{M}\to M$ with cohomology classes $ \alpha_1,\dots,\alpha_n \in H^1(\widetilde{M};\mathbb{Z})$ satisfying $ \alpha_1\cup\dots\cup\alpha_n\neq 0$. We prove that there exists some number $ c$ such that: (1) any finite group of diffeomorphisms of $ M$ contains an abelian subgroup of index at most $ c$; (2) if $ \chi(M)\neq 0$, then any finite group of diffeomorphisms of $ M$ has at most $ c$ elements. We also give a new and short proof of Jordan's classical theorem for finite subgroups of $ \mathrm{GL}(n,\mathbb{C})$, of which our result is an analogue for $ \mathrm{Diff}(M)$.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec609884
dc.identifier.issn0002-9939
dc.identifier.urihttps://hdl.handle.net/2445/96596
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-10-10221-4
dc.relation.ispartofProceedings of the American Mathematical Society, 2010, vol. 138, p. 2253-2262
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9939-10-10221-4
dc.rights(c) American Mathematical Society (AMS), 2010
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFísica matemàtica
dc.subject.otherMathematical physics
dc.titleA Jordan theorem for the diffeomorphism group of some manifolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
609884.pdf
Mida:
219.51 KB
Format:
Adobe Portable Document Format